
A Modeling and Execution Environment for Distributed Scientific

Workflows∗

Ilkay Altintas\ Sangeeta Bhagwanani+ David Buttler∗ Sandeep Chandra+ Zhengang Cheng+

Matthew A. Coleman‡ Terence Critchlow‡ Amarnath Gupta\ Wei Han∗ Ling Liu∗

Bertram Ludäscher\ Calton Pu∗ Reagan Moore\ Arie Shoshani† Mladen Vouk+

1 Introduction

The Scientific Data Management Center project (short:
SDM) is part of a large research program sponsored by
the US Department of Energy (DOE) to enable Scien-
tific Discovery through Advanced Computing [SDM02,
Sci]. SDM brings together research teams from DOE
labs and universities to address and resolve novel data
management challenges that arise due to the new data
and information centric ways in which science is con-
ducted today.

This demonstration illustrates how a domain scien-
tist can perform a complex scientific task by interleav-
ing data access, querying, and manipulation, as well as
analytical steps and computations in complex, problem
specific ways. We show how our system is used by a ge-
neticist for solving the problem of discovering so-called
“co-regulated” genes by interlinking data and computa-
tion from several web sites, local computations, as well
as local and remote databases. The main distinctive
features of our system (compared, e.g., to the ZOO en-
vironment [ILGP96]) include (i) executable workflows
run as web services, (ii) abstract workflows employ con-
cept names and semantic types that are higher-level
(and thus more “scientist friendly”) than executable
workflows, and (iii) our system supports automatic
translation of the latter into the former.

A Scientist’s Problem: Promoter Identification
Workflow (PIW). Through the Human Genome
Sequencing Project a wealth of information has been
gained at the nucleotide level. With the advent of
DNA-based microarrays the wealth of data for in-
terpretation is quickly becoming daunting. A start-
ing point for discovery is to link genomic biology ap-
proaches such as microarrays with bioinformatics to
identify and characterize eukaryotic promoters – here,

∗Georgia Institute of Technology, †Lawrence Berkeley Labora-
tory (LBL), ‡Lawrence Livermore National Laboratory (LLNL),
+North Carolina State University (NCSU), \San Diego Super-
computer Center (SDSC). This work was supported by DOE
LLNL contract No. W-7405-Eng-48, SciDAC/SDM contract No.
DE-FC02-01ER25486, and NSF grant No. ITR 0225676 (SEEK).

we call this the promoter identification workflow or
PIW.1 To clearly identify co-regulated groups of genes,
high throughput computational molecular biology tools
are first needed that are scalable for carrying out a vari-
ety of tasks such as identifying DNA sequences of inter-
est, comparison of DNA sequences, and identification
of transcription factor binding sites, etc.

Some of these steps can be executed by querying
web-accessible databases and computation resources.
However, using web sources “as-is” to enact scien-
tific workflows requires many manual and thus time-
consuming and error-prone steps. It is desirable to
automate the scientific workflows such as the PIW as
much as possible. A number of information technology
and database challenges have to be overcome:

• Most current web sources are made for human in-
teraction and thus do not lend themselves easily
to automation. Semiautomatic or automatic wrap-

ping techniques have to be applied in order to turn
interactive web sources into remote function invo-
cations and database queries.

• An execution environment for running distributed
workflows over the web has to be devised. This
includes capabilities for monitoring workflow ex-
ecution, checkpointing, and re-running or resum-
ing suspended runs. This is hard due to the au-
tonomous nature of sources, their heterogeneous
and limited access capabilities, and their occa-
sional, unpredictable downtimes.

• The design of scientific workflows poses unique
challenges both to the domain scientist who drives
the overall design and the IT expert who is charged
with defining the specific data and control flow.
This is due to the complexity of the scientific data,
the complexity of the (often hidden) semantic links
between the different data sources, and the com-
plexity of the syntactic and procedural intricacies
that have to be overcome when chaining together
actual web sources in the PIW.

1a promoter is a subsequence of a chromosome that sits close
to a gene and regulates its activity

1



Our system demonstration illustrates how the above
problems are addressed and resolved using a web ser-
vice oriented execution environment based on XWrap-
ed sources [LPH01] and a semantic mediation approach
[LGM01]. We present the overall approach and system
components in the following.

2 Scientific Workflow Approach and

Architecture

Our system for managing scientific workflows borrows
some ideas from database mediation, most notably the
use of wrappers to provide uniform data access (in
XML syntax) to heterogeneous web sources. How-
ever, the promoter identification workflow PIW cannot
be modeled using simple declarative database queries.
Here, by (scientific) workflow we mean a directed graph
over domain-specific tasks and control structures. A
scientific workflow in our system can be seen as a user-
specified abstract “query plan” whose operators include
not only the usual database operations but domain-
specific functions such as gene sequence homology and
cluster analysis. In our architecture, an extensible
repository of such abstract tasks is made available to
the scientist.2 Thus the core idea of our approach and
system is that the scientist designs an abstract work-

flow (AWF) from the repository of problem-oriented
abstract tasks while the system tries to derive from
AWF an executable workflow (EWF) in terms of the
available web services. The use of two separate vo-
cabularies of abstract tasks and executable tasks (the
actual available web services) has several advantages:

By hiding the low-level details and intricacies of ac-
tual web services, the scientist user can focus on the
design of the given scientific workflow at the concep-
tual level. For example, there are several web sources
that we have wrapped as web services that implement
the abstract task of gene sequence homology. Taken
together such services provide a similar functional-
ity, but are often implemented using different algo-
rithms and/or applied to different data sets, e.g., see
[BLAa, FAS02, BLAb].

We provide a mechanism to specify how the func-
tionality of abstract tasks can be defined in terms of
the available executable web services. We call this the
abstract-as-view (AAV) mapping, since we express the
abstract task as a view over the existing executable
tasks. Our view definition language for the AAV map-
ping differs, e.g., from Datalog through its use of pro-
cedural constructs (e.g., task order, parameter bind-

2We are not aware of a specific standard API for recurring
tasks such as gene sequence homology. Once such standards
emerge, they can be easily added to our repository.

ing patterns, and guarded commands), data types, and
semantic types. Differences among web services that
play a role in the implementation of an abstract task
are hidden in the AAV mapping and do not interfere
with the design of the abstract workflow. Instead the
system creates a distributed executable workflow plan
EWF from AWF and AAV.

2.1 System Architecture and Components

Figure 1 depicts the system architecture. The user in-
teracts with a GUI called the workflow pilot for de-
signing the abstract workflow AWF and enacting and
monitoring the exectuable workflow EWF. The work-

flow compiler translates AWF to EWF using the AAV
mapping. In order to assist the user in the abstract
workflow design, abstract tasks have associated seman-
tic types that come from a linked domain ontology.
Using semantic types, the system can automatically
introduce conversion steps (see below). Abstract tasks
are stored in the abstract task repository, while exe-
cutable tasks are stored in a web services repository.
The signatures of web services are described using a
WSDL extension; process communication is done us-
ing SOAP. After invoking the WF-Compiler, the WF-
Pilot can display and run the executable workflow plan.
Executing EWF includes invocation of generated XML
wrappers.

WF-Pilot. The WF-Pilot is a Java/Swing based
GUI and allows the user to design the abstract work-
flow in an intuitive manner using graphical primitives
for the WF language constructs explained below. The
WF-Pilot is also tightly coupled with the WF-engine,
i.e., a web service-oriented runtime environment for en-
acting and monitoring workflows. Features of the WF-
Pilot include checkpointing of intermediate data nodes,
e.g., for subsequent analysis or reruns of parts of the
workflow with different parameters.

WF-Compiler. An important step during the AWF
AAV
−→ EWF translation is to ensure that abstract tasks
are “fed” with correctly typed data, and that binding
pattern restrictions of executable tasks (web services)
are observed. The underlying language for defining
workflows is based on the following nodes and edges:

• Task nodes represent functions such as
gene sequence homology. A task node has various
ports connecting it to other nodes, i.e., data-in,
data-out (for the main data flow), parameter-in

(for control parameters), and exit-code. The latter
is used to determine whether a task has been

2



Figure 1. Scientific Workflow Management System architecture

executed successfully and can be used to specify
contingency actions.

• Control nodes are used to specify branching based
on runtime conditions. A control node has data-

in and parameter-in ports and k conditional data-

out ports, each guarded with a condition ϕi, for
i = 1, . . . , k. Data (and control) flows through
data-outk iff ϕk is true.

• Data nodes characterize the data types and seman-
tic types (concept names from a shared ontology)
of the data flowing between tasks, while parame-

ter nodes characterize the data types and semantic
types of the control parameters of tasks.

XWRAP-Composer. This component generates
wrappers that extract relevant information from dif-
ferent interlinked pages and compose a wrapped XML
document, containing the combined information from
those pages. In the PIW example, each executable step
requires access to some Bioinformatics web sources.
For instance, for the task of identification of DNA
sequences that may have similar reactions to those
gene expression profiles resulting from the microarray
experiments, one needs to use the full sequence ob-
tained from the search result of GenBank database
to run a BLAST query [BLAa] over NCBI [NCB02]
sources. To obtain a set of homologues (fragments
of similar DNA sequences) from BLAST, one needs
to traverse the outgoing links from the BLAST sum-
mary page to get to each of the BLAST detail pages.

The XWRAP-Composer encodes both the link refer-
ence flow graph and the data extraction flow graph
over multiple pages and utilizes them to build wrapper
programs that capture the relevant information from
multiple selected pages using a single web service in-
vocation. XWRAP-Composer is built on top of the
XWRAP toolkit [LPH01].

3 Demonstration

The system demonstration will show our current pro-
totype developed for the use of a real-world molecular
biologist trying to find “co-regulated genes” using the
PIW. The demonstration highlights both the usage and
several internal features of the prototype:

AWF Design Mode. The end-user uses the WF-
Pilot to define the abstract promoter identification
workflow. To accomplish any of the PIW abstract
tasks, the user will search through the abstract
task library. Suppose the user chooses the task
gene sequence homology as a way of finding promot-
ers. As the task is graphically put in the WF-Pilot
workspace, the system notices that there are multiple
possible overlapping instantiations for this task. This
triggers a semantic disambiguation routine that asks
the user whether any of the predefined semantic pre-
conditions apply to the input (e.g., “Is the length of

the sequence always less then 5000?”). As the user
answers these questions, the system selects the appro-
priate instantiations, or possibly keeps several of them

3



as alternate sources to be selected based on runtime
availability and performance. As the user builds an
abstract workflow by drawing edges between consec-
utive abstract tasks, the system checks for data and

semantic type compatibility between the output types
and input types of the predecessor and successor tasks,
respectively. For example, the result of a Blast search
from the NCBI web site produces a genomic sequence,
and the TransFac site [TRA02] accepts a genomic se-
quence. However, the Blast output can come from
either of the two gene strands (5’ or 3’), but for the
subsequent comparison using TransFac derived data,
a single orientation is needed. Therefore, the system
inserts a semantic type conversion rule that com-
plements and reverses the sequence (complementation
swaps the bases: A ↔ T and G ↔ C).

AAV Design Mode. In this mode, a workflow engi-
neer defines single abstract tasks in terms of executable
tasks using the WF-Pilot GUI or a text-oriented inter-
face. For example, the abstract task of cluster analysis

is first defined as a procedure which, given microarray
observational data returns a hierarchical grouping of
genes, together with additional metadata for each gene
(like its distance from the cluster mean). The AAV
designer creates a concrete instance of cluster analysis

by associating it with a specific cluster analysis tool
such as Clusfavor. Like abstract tasks, executable
instances of abstract tasks come with pre- and post-
conditions that guard their applicability. In general the
AAV designer may create multiple executable instances
of the same abstract task, e.g., gene sequence homology

will be defined in terms of both the Blast web-site
from NCBI and the Blat web-site from UC Santa
Cruz. In this case, the AAV designer has to spec-
ify the conditions that allow the system to select at
runtime one or more of the executable tasks in place
of the abstract task. If the conditions do not deter-
mine a unique instantiation, the user is prompted for
a decision at runtime. Possible relationships between
different executable tasks include equivalent (in which
case the system can pick either one, based on avail-
ability and performance), complementary (in which case
the designer has to state mutually disjoint conditions),
and overlapping (so task selection at runtime usually
involves prompting the user).

EWF Execution Mode. Similar to the AWF, the
EWF can be viewed and even edited through the WF-
Pilot. In order to enact this workflow, the user is first
prompted for remaining runtime parameters that have
not been specified as part of the AWF. In execution
mode, the user can also add ad-hoc breakpoints to in-

spect intermediate results, and decide which interme-
diate data should be made persistent. In general, all
user-defined parameter settings and answers to inter-
active steps are logged by the system, thus allowing
the user to rerun a workflow with the same or adjusted
parameter settings.

Given the growing complexity and volume of the ge-
nomic information, robust computational approaches
such as the PIW approach are especially needed. As
presented, this is a novel system that can link microar-
ray data to genomic database information and pass it
to multiple tools. The resulting PIW database and
workflow tools become a predictive model to form and
test hypotheses related effects based on gene/pathway
interactions. There are currently no easily accessible
methodologies that allow for what the PIW demo of-
fers. Our model provides the biologist with a quickly
adaptable way to identify genes and functional path-
ways that are coincidentally related to gene expression
patterns. As new algorithms and databases are devel-
oped they can be quickly absorbed by the workflow, so
that the biologist can focus his work on new research
hypotheses instead of spending his time on data man-
agement.

References

[BCC+02] D. Buttler, M. Coleman, T. Critchlow, R. Fileto,
W. Han, C. Pu, D. Rocco, and L. Xiong. Querying
Multiple Bioinformatics Information Sources: Can
Semantic Web Research Help? SIGMOD Record,
31(4), 2002.

[BLAa] Basic Local Alignment Search Tool (BLAST). http:
//www.ncbi.nlm.nih.gov/BLAST/, 2002.

[BLAb] UCSC Genome Bioinformatics – BLAT FAQ. http:

//genome.ucsc.edu/FAQ.html#188.

[FAS02] European Bioinformatics Institute – FASTA. http:

//www.ebi.ac.uk/fasta33/, 2002.

[ILGP96] Y. E. Ioannidis, M. Livny, S. Gupta, and N. Pon-
nekanti. ZOO: A Desktop Experiment Management
Environment. In VLDB, 1996.

[LGM01] B. Ludäscher, A. Gupta, and M. E. Martone. Model-
Based Mediation with Domain Maps. In Intl. Conf.
on Data Engineering (ICDE), 2001.

[LPH01] L. Liu, C. Pu, and W. Han. An XML-Enabled Data
Extraction Tool for Web Sources. Information Sys-
tems, Special Issue on Data Extraction, Cleaning,
and Reconciliation, 2001.

[NCB02] National Center for Biotechnology Information
(NCBI). http://www.ncbi.nlm.nih.gov/, 2002.

[Sci] Scientific Discovery through Advanced Computing
(SciDAC), Department of Energy (DOE). http:

//www.er.doe.gov/scidac/.

[SDM02] Scientific Data Management Center (SDM). http:

//sdm.lbl.gov/sdmcenter/, 2002.

[TRA02] TRANSFAC – Transcription Factor Database. http:
//transfac.gbf.de/TRANSFAC/, 2002.

4


